skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gee, James C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 9, 2025
  2. While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexpected situations. This study investigates model sensitivity to domain shifts, such as data sampled from different hospitals or confounded by demographic variables like sex and race, focusing on chest X-rays and skin lesion images. The key finding is that existing visual backbones lack an appropriate prior for reliable generalization in these settings. Inspired by medical training, the authors propose incorporating explicit medical knowledge communicated in natural language into deep networks. They introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that integrate knowledge priors, enabling reasoning with clinically relevant factors found in medical textbooks or PubMed. KnoBo utilizes retrieval-augmented language models to design an appropriate concept space, paired with an automatic training procedure for recognizing these concepts. Evaluations across 20 datasets demonstrate that KnoBo outperforms fine-tuned models on confounded datasets by 32.4% on average. Additionally, PubMed is identified as a promising resource for enhancing model robustness to domain shifts, outperforming other resources in both information diversity and prediction performance. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025